# 화학 방정식

## Acid Ionization Constant

$K_a = \frac{{\left[ {H^ + } \right]\left[ {A^ - } \right]}}{{\left[ {HA} \right]}}$

## Base Ionization Constant

$K_b = \frac{{\left[ {OH^ - } \right]\left[ {HB^ + } \right]}}{{\left[ B \right]}}$

## Ion Product Constant for Water

$\begin{array}{*{20}c} {K_w = \left[ {OH^ - } \right]\left[ {H^ + } \right] = K_a \times K_b } \\ {\begin{array}{*{20}c} { = 1.0 \times 10^{ - 14} } & {at} & {25^\circ C} \\ \end{array}} \\ \end{array}$

## pH Defined

$pH = - \log \left[ {H^ + } \right]$

## pOH Defined

$pOH = - \log \left[ {OH^ - } \right]$

## pH and pOH Relationship

$14 = pH + pOH$

## Buffer Design Equation

$pH \approx pK_a - \log \frac{{\left[ {HA} \right]_0 }}{{\left[ {A^ - } \right]_0 }}$

## pOH and Base Ionization Equilibrium Constant Relationship

$pOH = pK_b + \log \frac{{\left[ {HB^ + } \right]}}{{\left[ B \right]}}$

## pKa Definition

$pK_a = - \log K_a$

## pKb Definition

$pK_b = - \log K_b$

## Gas Pressure and Concentration Relationship

$K_p = K_c \left( {RT} \right)^{\Delta n}$

## Ideal gas equation

$PV = nRT$

$PV = k$

## Charles' Law

$\frac{V}{t} = k$

## Van der Waals equation

$\left( {P + \frac{{an^2 }}{{V^2 }}} \right)\left( {V - bn} \right) = nRT$

## Molar Heat Capacity at Constant Pressure

$C_p = \frac{{\Delta H}}{{\Delta T}}$

## Partial Pressure of a Gas

$\begin{array}{*{20}c} {P_A = P_{total} X_A } \\ {\begin{array}{*{20}c} {where} & {X_A = \frac{{\begin{array}{*{20}c} {moles} & A \\ \end{array}}}{{\begin{array}{*{20}c} {total} & {moles} \\ \end{array}}}} \\ \end{array}} \\ \end{array}$

## Total Gas Pressure as Sum of Partial Pressures

$P_{total} = P_A + P_B + P_C + \ldots$

## Number of Moles

$n = \frac{m}{M}$

## Temperature in Kelvin from Degrees Celsius Conversion

$K = ^\circ C + 273$

## Combined Gas Law

$\frac{{P_1 V_1 }}{{n_1 T_1 }} = \frac{{P_2 V_2 }}{{n_2 T_2 }}$

## Density of a Material

$D = \frac{m}{V}$

## Root Mean Square Velocity of Gas Molecules

$u_{rms} = \sqrt {\frac{{3kT}}{m}} = \sqrt {\frac{{3RT}}{M}}$

## Kinetic Energy per molecule

$\frac{{KE}}{{molecule}} = \frac{1}{2}m\upsilon ^2$

## Kinetic Energy per Mole

$\frac{{KE}}{{mole}} = \frac{3}{2}RTn$

## Graham's Law of Effusion

$\frac{{r_1 }}{{r_2 }} = \sqrt {\frac{{M_2 }}{{M_1 }}}$

## Molarity Defined

$\begin{array}{*{20}c} {molarity,} & {M = \frac{{\begin{array}{*{20}c} {moles} & {solute} \\ \end{array}}}{{\begin{array}{*{20}c} {liter} & {solution} \\ \end{array}}}} \\ \end{array}$

## Molality Defined

$\begin{array}{*{20}c} {molality,} & { = \frac{{\begin{array}{*{20}c} {moles} & {solute} \\ \end{array}}}{{\begin{array}{*{20}c} {kilogram} & {solvent} \\ \end{array}}}} \\ \end{array}$

## Freezing Point Depression

$\Delta T_f = iK_f \times molality$

## Boiling Point Elevation

$\Delta T_b = iK_b \times molality$

## Osmotic Pressure

$\pi = \frac{{nRT}}{V}i$

## van't Hoff equation

$\ln \left( {\frac{{K_2 }}{{K_1 }}} \right) = - \frac{{\Delta H^\circ }}{R}\left[ {\frac{1}{{T_2 }} - \frac{1}{{T_1 }}} \right]$